วันอาทิตย์ที่ 15 มกราคม พ.ศ. 2555

                                                           Solar   System
From Wikipedia, the free encyclopedia
Planets and dwarf planets of the Solar System. Sizes are to scale, but relative distances from the Sun are not.
 
Solar System showing plane of the Earth's orbit around the Sun in 3D view with only Mercury, Venus, Earth and Mars

                 The Solar System is also home to a number of regions populated by smaller  objects. The asteroid belt, which lies between Mars and Jupiter, is similar to the terrestrial planets as it is composed mainly of rock and metal. Beyond Neptune's orbit lie the Kuiper belt and scattered disc; linked populations of trans-Neptunian objects composed mostly of ices such as water, ammonia and methane. Within these populations, five individual objects, Ceres, Pluto, Haumea, Makemake and Eris, are recognized to be large enough to have been rounded by their own gravity, and are thus termed dwarf planets.[e] In addition to thousands of small bodies[e] in those two regions, various other small body populations, such as comets, centaurs and interplanetary dust, freely travel between regions.
              Six of the planets and three of the dwarf planets are orbited by natural satellites,[b] usually termed "moons" after Earth's Moon. Each of the outer planets is encircled by planetary rings of dust and other particles.

              The solar wind, a flow of plasma from the Sun, creates a bubble in the interstellar medium known as the heliosphere, which extends out to the edge of the scattered disc. The hypothetical Oort cloud, which acts as the source for long-period comets, may also exist at a distance roughly a thousand times further than the heliosphere.
The Solar System is located in the Milky Way galaxy, which contains about 200 billion stars.

Solar System showing the plane of the ecliptic of the Earth's orbit around the Sun in 3D view showing Mercury, Venus, Earth, Mars and Jupiter making one full revolution. Saturn and Uranus also appear in their own respective orbits around the Sun

Discovery and exploration
               For many thousands of years, humanity, with a few notable exceptions, did not recognize the existence of the Solar System. People believed the Earth to be stationary at the centre of the universe and categorically different from the divine or ethereal objects that moved through the sky. Although the Greek philosopher Aristarchus of Samos had speculated on a heliocentric reordering of the cosmos,[1] Nicolaus Copernicus was the first to develop a mathematically predictive heliocentric system.[2] His 17th-century successors, Galileo Galilei, Johannes Kepler and Isaac Newton, developed an understanding of physics that led to the gradual acceptance of the idea that the Earth moves around the Sun and that the planets are governed by the same physical laws that governed the Earth. Additionally, the invention of the telescope led to the discovery of further planets and moons. In more recent times, improvements in the telescope and the use of unmanned spacecraft have enabled the investigation of geological phenomena such as mountains and craters, and seasonal meteorological phenomena such as clouds, dust storms and ice caps on the other planets.


                                                                  Structure

The orbits of the bodies in the Solar System to scale (clockwise from top left
               
                  The principal component of the Solar System is the Sun, a main-sequence G2 star that contains 99.86 percent of the system's known mass and dominates it gravitationally.[3] The Sun's four largest orbiting bodies, the gas giants, account for 99 percent of the remaining mass, with Jupiter and Saturn together comprising more than 90 percent.[c]        Most large objects in orbit around the Sun lie near the plane of Earth's orbit, known as the ecliptic. The planets are very close to the ecliptic while comets and Kuiper belt objects are frequently at significantly greater angles to it.[4][5] All the planets and most other objects orbit the Sun in the same direction that the Sun is rotating (counter-clockwise, as viewed from above the Sun's north pole).[6] There are exceptions, such as Halley's Comet.
                  
                   The overall structure of the charted regions of the Solar System consists of the Sun, four relatively small inner planets surrounded by a belt of rocky asteroids, and four gas giants surrounded by the outer Kuiper belt of icy objects. Astronomers sometimes informally divide this structure into separate regions. The inner Solar System includes the four terrestrial planets and the asteroid belt. The outer Solar System is beyond the asteroids, including the four gas giant planets.[7] Since the discovery of the Kuiper belt, the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune.[8]
                           
                 



 

ไม่มีความคิดเห็น:

แสดงความคิดเห็น